A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of High Arctic plant productivity

نویسندگان

  • Taejin Park
  • Sangram Ganguly
  • Stein Rune Karlsen
  • Helen B Anderson
  • René van der Wal
  • Brage Bremset Hansen
چکیده

Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000−2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000−2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R2 =0.51 and 0.44, respectively). The commonly used ‘maximum NDVI’ plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity

In boreal conifers, maximum latewood density (MXD) of annual rings varies in response to warm-season temperatures. Vegetation productivity can be estimated using the Normalized-DiŒerence Vegetation Index (NDVI) calculated from satellite sensor data. Ground measurements related to productivity are required in order to evaluate these estimates. MXD from three boreal sites was compared with estima...

متن کامل

Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors

Open, Grassand Forb-Dominated (OGFD) ecosystems, including tundra, tropical grasslands and savanna, provide habitat for both wild and domesticated large ungulate herbivores. These ecosystems exist across a wide temperature gradient from the Arctic regions to the Equator, but are confined to a narrow set of moisture conditions that range from arid deserts to forest-dominated systems. Primary pro...

متن کامل

The greening and browning of Alaska based on 1982–2003 satellite data

Aim To examine the trends of 1982–2003 satellite-derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982–2003 data set with 64-km 2 pixels were extracted from...

متن کامل

Validation of MODIS and GEOV1 fPAR Products in a Boreal Forest Site in Finland

Remote sensing of the fraction of absorbed Photosynthetically Active Radiation (fPAR) has become a timely option to monitor forest productivity. However, only a few studies have had ground reference fPAR datasets containing both forest canopy and understory fPAR from boreal forests for the validation of satellite products. The aim of this paper was to assess the performance of two currently ava...

متن کامل

Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model

The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018